Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This study investigates the electronic structure of the vanadium-based kagome metal YV6Sn6 using magnetoresistance (MR) and torque magnetometry. The MR exhibits a nearly linear, non-saturating behavior, increasing by up to 55% at 35 T but shows no evidence of Shubnikov–de Haas oscillations. In contrast, the torque signal, measured up to 41.5 T, reveals clear de Haas–van Alphen (dHvA) oscillations over a wide frequency range, from a low frequency of Fα ∼20 T to high frequencies between 8 and 10 kT. Angular and temperature-dependent dHvA measurements were performed to probe the Fermi surface parameters of YV6Sn6. The dHvA frequencies display weak angular dependence, and the effective mass, determined by fitting the temperature-dependent data to the Lifshitz–Kosevich formula, is 0.097 mo, where mo represents the free electron mass. To complement the experimental findings, we computed the electronic band structure and Fermi surface using density functional theory. The calculations reveal several notable features, including multiple Dirac points near the Fermi level, flatbands, and Van Hove singularities. Two bands cross the Fermi level, contributing to the Fermi surface, with theoretical frequencies matching well with the observed dHvA frequencies. These combined experimental and theoretical insights enhance our understanding of the electronic structure of YV6Sn6 and provide a valuable framework for studying other vanadium- and titanium-based kagome materials.more » « less
-
NA (Ed.)This work presents the evolution of the electronic properties of kagome superconductor CsV3Sb5 under pressure. The magnetoresistance under high fields of 43 T showed clear Shubnikov–de Haas (SdH) oscillations with multiple frequencies up to 2000 T. With the application of pressure, we observed a sudden change in SdH oscillations with the disappearance of the high-frequency signal near the critical pressure Pc1 ∼ 0.7 GPa. We argue that this change could be due to a reconstruction of the Fermi surface (FS) in CsV3Sb5. To interpret our experimental data, we computed the electronic band structures and FS of CsV3Sb5 using ab initio density functional theory. Our results indicate that both the electronic bands and FS of CsV3Sb5 are highly sensitive to external pressure. The deformation of FS pockets with increasing pressure qualitatively explains our experimental observations. The pressure-driven FS instability in CsV3Sb5 may induce changes in its electronic states, such as superconductivity, charge density wave, nontrivial topology, and more. Therefore, these results are invaluable for gaining insights into these electronic states in CsV3Sb5, as well as in other kagome materials.more » « less
An official website of the United States government
